lssues (cont'd)

- Class imbalance
- Classifier takes too long
- Classifier doesn't generalize well

Classifier takes too long

- Subsampling:
 - Do not necessarily use all the data
 - Learning curve suggests training size
- Distributed Approach:
 - How to split the data and combine the results
 - Depends on algorithm
 - Distributed-computing frameworks: Hadoop, Mahoot, MapReduce, TensorFlow...

Classifier does not generalize well

A classifier

- Has a low error rate on the training set
- Has high error when you evaluate on a test set
- Solutions
 - Try a smaller set of features
 - Get more training examples
 - Obtain new features

CLASS IMBALANCE

Application 1

- Data source: an automated inspection system for monitoring products and find defective items
- How many items are defective?
- How many items are operational?

Defective products: 4 in 1 million Defective vs Operational: 4 vs 999,996

Application 2

- Data source: credit card fraud detection system
- How many transactions are fraudulent?
- How many transactions are legitimate?

Fraud transactions: 1 in 100

Class Imbalance

 A disproportionate number of instances that belong to different classes

Challenges

- First, it can be difficult to find enough samples of a rare class.
- Second, accuracy which is a traditional measure for evaluating classification performance is not good for evaluating models in the case of class imbalance.

Challenges (cont'd)

- In credit card fraud example: what is the accuracy of a model that classifies ALL transactions as legitimate?
- In fact, a correct classification of the rare class has a greater value than a correct classification of the majority class

- Issues:
 - Performance measures need to be modified

Approaches

Alternative metrics

- capture different criteria performance than accuracy

Cost sensitive learning

- minimize the cost of a model on a training dataset by assigning uneven penalties or costs when making predictions.

Sampling

- Binary classification:
 - Rare: Positive
 - Majority: Negative

Confusion Matrix:

		Predicted Class		
		+	—	
Actual	Ŧ	f ₊₊ (TP)	f ₊₋ (FN)	
Class		f_+(FP)	f(TN)	

•**True Positive Rate**: fraction of positive instances correctly predicted TPR = TP/(TP + FN)

•**True Negative Rate**: fraction of negative instances correctly predicted TNR = TN/(FP + TN)

•False Positive Rate: fraction of negative instances predicted positive FPR = FP/(TN + FP)

•False Negative Rate: fraction of positive instances predicted negative FNR = FN/(TP + FN)

		Predicted Class		
		+	_	
Actual	+	f ₊₊ (TP)	f ₊₋ (FN)	
Class	_	f+ (FP)	f(TN)	

• **Recall**: fraction of positive records correctly predicted (true positive)

r = TP/(TP + FN)

 Precision: fraction of records that are truly positive in the set predicted as positive (ratio between the True Positives and all the Positives)

p = TP/(TP + FP)

Predicted Class+-Actual+ f_{++} (TP) f_{+-} (FN)Class- f_{-+} (FP) f_{--} (TN)

•For example:

For all the patients who actually have heart disease, recall tells us how many we correctly identified as having a heart disease.

The measure of patients that we correctly identify having a heart disease out of all the patients we predicted they have heart disease. -- precision

• **Recall**: fraction of positive records correctly predicted (true positive)

r = TP/(TP + FN)

Precision: fraction of records that are truly positive in the set predicted as positive
 p = TP/(TP + FP)

- •A model can usually maximize one but not the other
- •Building a model that maximizes both is difficult

• F₁ measure:

 $F_1 = 2rp/(r + p) = 2/(1/r + 1/p)$

from sklearn.metrics import precision_recall_fscore_support

The support is the number of occurrences of each class

Credit Card Fraud Example

Recall:

r = TP/(TP + FN) = 1/5 = 0.2

• Precision: p = TP/(TP + FP) = 1/1 = 1

-		Predicted Class		
		+	_	
Actual	+	1 (TP)	4 (FN)	
Class		0 (FP)	95 (TN)	

• F₁ measure:

 $F_1 = 2rp/(r + p) = 2*0.2*1/1.2 = 0.33$

• Error Rate:

 $\epsilon = 4/100 = 0.04$

Credit Card Fraud Example

Recall:

r = TP/(TP + FN) = 4/5 = 0.8

• Precision: p = TP/(TP + FP) = 4/4 = 1

-		Predicted Class		
		+	_	
Actual	+	4 (TP)	1(FN)	
Class		0 (FP)	95 (TN)	

• F₁ measure:

 $F_1 = 2rp/(r + p) = 2/(1/r + 1/p) = 2*0.8*1/1.8 = 0.88$

• Error Rate:

 $\epsilon = 1/100 = 0.01$

Cost Sensitive Learning

- Incorporate cost in the process of building the model
- Decisions tree:
 - Select the attribute for the split
 - Decide whether to prune a subtree

- Nearest Neighbor:
 - Update decision boundary based on cost

		Predicte	ed Class
		+	_
Actual	+	-1	100
Class	-	1	0

Sampling-Based Approaches

- Modify distribution so rare classes are well represented
- Undersampling:
 - Choose all positive records
 - Randomly choose an equal number of negative records
- Problem: might drop some important negative records
- Solution: Perform undersampling multiple times

Sample used

Discard

Sampling-Based Approaches

Oversampling:

- Choose all negative records
- Replicate positive records until both sets have equal number of records
- Problem: if data is noisy, noise may be replicated
- Added examples: provide no new information
- But: prevent learning algorithm from pruning important parts of the model because of not enough data points

Replicate positive class

CLASSIFICATION – MULTICLASS CLASSIFICATION

Multiclass ClassificationCharacter recognition

ZAYVUN

Multiclass Classification

Image recognition

Multiclass Classification Approaches

- One versus All (OVA)
- One versus One (OVO)
- Error correcting codes

One Versus All

- $Y = \{y_1, y_2, ..., y_K\}$: the set of class labels
- Classifier building:
 - For each y_i, create a binary problem such that:
 - Instances belonging to y_i are positive
 - Instances not belonging to y_i are negative
- Tuple Classification:
 - Classify the tuple using each classifier
 - If classifier i returns a positive label, y_i gets one vote
 - If classifier i returns a negative label, all classes except y_i get a vote
 - Assign the class with the most votes

One Versus All - Example

Instances			
for	C _A		
X1	+		
X2	-		
X3	+		
X4	-		
X5	-		
X6	-		
X7	-		
X8	+		

Instances for C _B			
X1	-		
X2	+		
X3	I		
X4	-		
X5	-		
X6	-		
X7	+		
X8	-		

Instances for C _C		
X1	-	
X2	-	
X3	I	
X4	+	
X5	+	
X6	I	
X7	-	
X8	-	

Instances for C _D			
X1	-		
X2	-		
X3	-		
X4	-		
X5	-		
X6	+		
X7	-		
X8	-		

One Versus All - Example

Classify test tuple X: (-, +, -, -)

Classification results through all the One vs. All classifiers

	C _A	C _B	C _C	C _D	
	-	+	I	I	Votes
Α			1	1	2
В	1	1	1	1	4
C	1			1	2
D	1		1		2

Classify test tuple X: (+, -, +, -)

One Versus One

- $Y = \{y_1, y_2, ..., y_K\}$: the set of class labels
- Classifier building:
 - For each pair y_i and y_i create a binary problem:
 - Keep instances belonging to y_i and y_i
 - Ignore other instances
- Tuple Classification:
 - Classify the tuple using each classifier C_{ij}
 - If classifier C_{ij} returns *i* label, y_i gets one vote
 - If it returns *j*, y_j gets one vote
 - Assign the class with the most votes

One Versus One - Example

Input Instances X1 Α X2 В X3 Α С X4 X5 С X6 D Χ7 В X8 Α

Instances for C _{AB}		
X1	А	
X2	В	
X3	А	
X7	В	
X8	А	

Instances for C _{AC}			
X1	А		
X3	А		
X4	С		
X5	С		
X8	A		

Instances for C _{AD}					
X1	А				
X3 A					
X6	X6 D				
X8	А				

Instances for C _{BD}					
101					
X2 B					
X6 D					
X7	В				

Instances for C_{BC}

X2	В
X4	С
X5	С
X7	В

Instances for C _{CD}					
X4 C					
X5 C					
X6	D				

One Versus One - Example

• Classify test tuple X: (B, A, D, B, D, D)

	AB	AC	AD	BC	BD	CD	
R _x	В	А	D	В	D	D	Votes
A		1					1
В	1			1			2
С							0
D			1		1	1	3

Characteristics

- One vs All:
 - Builds k classifiers for a k class problem
 - Full training set for each classifier
- One vs One:
 - Builds k(k-1)/2 classifiers
 - Subset of training set for each classifier
- Sensitive to binary classification errors

Error correcting codes

- Idea: Add redundancy to increase chances of detecting errors
- Training:
 - Represent each y_i by a unique n bit codeword
 - Build *n* binary classifiers, each to predict one bit
- Testing
 - Run each classifier on the test instance to predict its bit vector
 - Assign, to the test instance, the codeword with the closest Hamming distance to the output codeword
- Hamming distance: number of bits that differ

Example

- Given: $Y = \{y_1, y_2, y_3, y_4\}$
- Encode each y_i as:

Clas	s	Codeword						
y ₁	1	1	1	1	1	1	1	
y ₂	0	0	0	0	1	1	1	
y ₃	0	0	1	1	0	0	1	
y ₄	0	1	0	1	0	1	0	

- Need to train 7 classifiers
 - Generate 7 training sets.
 - For example, given Record <*X*, *y*₂>, add:
 - <X, 0> in the training set of classifiers 1..4
 - <X, 1> in the training set for 5..7

Data transformation - Example

Input Instances	Instances for C ₁	Instances for C ₂	Instances for C ₃	Instances for C ₄
X1 v2	X1 0	X1 0	X1 0	X1 0
	X2 0	X2 0	X2 1	X2 1
X2 Y3				

, · -		I	I	1	1	1	1
y ₂	0	0	0	0	1	1	1
y ₃	0	0	1	1	0	0	1
I							

	for	⁻ C ₆
X1	-	1
X2	2	0

Instances					
for C ₇					
X1	1				
X2	1				

X1	0
X2	1

Example:

•Test instance result: (0, 1, 1, 1, 1, 1, 1)

Test	0	1	1	1	1	1	1
y ₁	1	1	1	1	1	1	1
D	1	0	0	0	0	0	0

Hamming Distance = 1

Test	0	1	1	1	1	1	1
У 2	0	0	0	0	1	1	1
D	0	1	1	1	0	0	0

Hamming Distance = 3

Test	0	1	1	1	1	1	1
y ₃	0	0	1	1	0	0	1
D	0	1	0	0	1	1	0

Hamming Distance = 3

Test	0	1	1	1	1	1	1
y ₄	0	1	0	1	0	1	0
D	0	0	1	0	1	0	1

Hamming Distance = 3

Classify as y₁

Design issues

• How to design the appropriate set of codewords for each class

- Minimum codeword length to represent k classes $n = \log_2 k$
- It is required that both the row-wise and column-wise separation are large
 Each individual codeword should be separated from each of the other codewords with a large Hamming distance
 - Large row-wise separation: more tolerance for errors
 - Large column wise separation: binary classifiers are mutually independent

Exam 1 (10/8)

No Textbook; No Notes; No Slides; No ChatGPT

- Week 1 to Week 6
 - Preprocessing
 - Classification
 - Association Mining

- 1-Introduction
 - 2-Data Preprocessing (Part 1)
 - 3-Data Preprocessing (Part 2)
 - 4-Classification (Decision Trees)
 - 5-Classification (SVM)
 - 6-Classification (Naive Bayes)
 - 7-Classification (KNN)
 - 8-Classification (Neural Networks)
 - 9-Classification (Ensemble; Classifier Comparison)
 - 10-Classification (Class imbalance; Multi-class)
 - 11 + 12: Association Mining (Next week)
- Textbook to refer for preparation
 - Tan et al. 1st edition (Ch. 1-5, 6.1-6.3, 7.1-7.3)
 - Tan et al. 2nd edition (Ch. 1-4, 5.1-5.3, 6.1-6.3)
 - Shmueli et al. 3rd edition (2.2, 4.1-4.8, 5.3, Ch. 7-9.6, Ch. 11, 13.1, 14.1)

Exam 1 (10/8)

- Question types:
 - Multiple choice
 - True/false
 - Short answer
- Kinds of questions:
 - Definitions
 - When to use technique

Example Question:

- What is underfitting and how do you overcome it?
- What are training, validation, and test sets, and why is it important to distinguish between them?
- All classification algorithms are equally effective across various datasets.
 True or False?

Exam 1 (10/8)

- <u>Not</u> on the exam
 - Memorization of formulas
 - Solving formulas
 - Deep learning